We can write above integral as:


----(Splitting tan5x)


(Using tan2x = sec2x – 1)



----(Splitting tan3x)



(Using tan2x = sec2x – 1)



Considering integral (1)


Let u = tanx


du = sec2x dx


Substituting values we get,



Substituting value of u we get,



Considering integral (2)


Let t = tanx


dt = sec2x dx


Substituting values we get,



Substituting value of t we get,



Considering integral (3)


[ ∫ tanx dx = -log|cosx| + C]


integral becomes,



[ C+C+C is a constant]



1